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1. ABSTRACT
This paper presents a method for trajectory planning, threat

assessment, and semi-autonomous control of manned and 
unmanned ground vehicles. A model predictive controller 
iteratively replans a stability-optimal trajectory through the safe
region of the environment while a threat assessor and semi-
autonomous control law modulate driver and controller inputs to 
maintain stability, preserve controllability, and ensure that the 
vehicle avoids obstacles and hazardous areas. The efficacy of this 
approach in avoiding hazards while accounting for various types 
of human error, including errors caused by time delays, is 
demonstrated in simulation.

2. INTRODUCTION
Recent traffic safety reports from the National Highway 

Traffic and Safety Administration show that in 2007 alone, over 
41,000 people were killed and another 2.5 million injured in 
motor vehicle accidents in the United States (National Highway 
Traffic Safety Administration (NHTSA) 2008). The longstanding 
presence of passive safety systems in motor vehicles, combined 
with the ever-increasing influence of active systems, has 
contributed to a decline in these numbers from previous years. 
Still, the opportunity for improved collision avoidance 
technologies remains significant.

The need for improved hazard avoidance extends to military 
operations as well, where accidents involving both manned and 
unmanned ground vehicles continue to represent a significant 
challenge to operational effectiveness. In manned ground vehicle 
operations, such as supply convoys, personnel transport, and 
reconnaissance missions, vehicle operators face many of the same 
challenges as those faced by civilian drivers, including path
planning, lane-keeping, obstacle avoidance, and stability control. 
Additionally, operators of military vehicles often deal with 
significant terrain effects, low visibility conditions, and high 
situational uncertainty. Consequently, ground vehicle accidents 
currently represent the largest reported source of non-hostile 
deaths to U.S. soldiers during operation Iraqi Freedom (Defense 
Manpower Data Center, Statistical Information Analysis Division 
2010). 

Unmanned or “teleoperated” vehicles are increasingly being 
used in a variety of military functions, ranging from surveillance 
and reconnaissance to detecting and removing hazardous 

materials. While the advantages of teleoperation are compelling 
from tactical and human capital perspectives, the challenges 
associated with remotely operating a vehicle given current 
technology are daunting. Teleoperated vehicles are typically 
operated from a control station in which an operator monitors data 
transmitted from the vehicle and issues commands to the vehicle. 
Not only must the human operator cope with the challenges 
inherent to the manned driving task, but he/she must perform 
many of the same functions with a restricted field of view (FOV), 
limited depth perception, potentially disorienting camera 
viewpoints, and significant time delays. Telenavigating a ground 
vehicle under these conditions while monitoring the vehicle’s 
health status, the status of the mission/tasks, and the condition of 
the environment leads to high failure rates. In a study of 10 field 
tests, UGV performance was shown to be relatively low, with 
mean time between failures ranging from 6 to 20 hours (Carlson 
and Murphy 2005). Given standard USAR and Department of 
Defense shifts of 12 and 20 hours, respectively, these results 
suggest that today’s UGVs cannot be reliably depended upon to 
complete an entire shift.

Recent work on improving the reliability of teleoperated 
vehicles has focused largely on sensor processing and human 
interface design. Because of its substantial impact on wirelessly-
teleoperated UGVs, much of this research has been devoted to 
reducing time delay and its perceived effects. Predictive displays 
using augmented reality, visual tracking, and image-based 
rendering or “virtualized reality” have been shown in many studies 
to improve UGV driving performance by 20-60% over standard 
(live video feed) teleoperation control (Kelly et al. 2009; Kim et 
al. 1998; Zhenyuan Deng and Jagersand 2003). Further 
performance improvements have been achieved using multimodal 
displays (Aleotti et al. 2002) and multimodal inputs (Weimer and 
Ganapathy 1989).

While advances in sensor processing and human interface 
design may improve the operator’s distance estimation, spatial 
orientation, object detection, object identification, and situational 
awareness, and may even reduce the effects of sensing and control 
latency, reliable UGV operation remains fundamentally limited by 
the perception, judgment, and driving skill of the human operator. 
Just as maturation in manned ground vehicle design has resulted in 
driver error becoming the sole factor in 60% of automobile 
accidents and a contributing factor in 95% (Evans 1996) so it is 
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expected that maturation in UGV instrumentation and interface 
design will ultimately result in driver error being the limiting 
factor in the performance of teleoperated vehicles (Domme et al. 
2007).

Further improvements in the safety and reliability of both 
manned and unmanned ground vehicles will come from control 
systems with enough autonomy to correct or override driver error. 

Recent developments in onboard sensing, lane detection, 
obstacle recognition, and drive-by-wire capabilities have 
facilitated active safety systems that autonomously or semi-
autonomously assist in the driving task (Weilkes et al. 2005). In 
addition to planning a route through the environment, these 
systems may also assess the threat posed to the vehicle by various 
hazards and ensure that the vehicle avoids them. In semi-
autonomous systems, the planning, threat assessment, and control 
tasks are made more difficult by the inclusion of a human 
operator, who maintains at least partial control of the host vehicle.  
In these scenarios, the trajectory planner and semi-autonomous 
controller must allow for (and correct or reject if necessary) 
unanticipated inputs from the human operator.

In the traditional approach to autonomous vehicle navigation, 
a path planner and controller are arranged as a tiered subsystem, 
with a planner designing a collision-free path and the controller 
seeking to track that path while rejecting disturbances. Common 
path planning approaches include rapidly-exploring random trees 
(Leonard et al. 2008), graph search methods (Vaidyanathan et al. 
2001), potential fields analysis (Rossetter and Christian Gardes 
2006), and neural optimization techniques (Dong Kwon Cho and 
Myung Jin Chung 1991). Control laws commonly employed in 
these systems include PID schemes (Cremean et al. 2006), linear-
quadratic regulators (Bemporad et al. 2002), and nonlinear fuzzy 
controllers (Tsukagoshi and Wakaumi 1990).

With a human driver in the loop, tiered subsystem 
architectures that rely on a pre-planned path may be overly 
restrictive at best and inaccurate at worst. By seeking to limit the 
vehicle trajectory to a specific path, these approaches neither 
allow nor account for deviations from the nominal trajectory 
caused by human inputs or unanticipated hazard motion. Many 
existing semi-autonomous systems also seek to perform the hazard 
avoidance task without explicitly accounting for the effect of 
driver inputs on the vehicle trajectory (Netto et al. 2006). These 
systems generally estimate the threat posed by static or moving 
hazards with simple time-based, distance-based, or deceleration-
based measures (Fuller 1981; Polychronopoulos et al. 2004; 
Engelman et al. 2006). While these metrics provide a useful 
estimate of threat posed by a given maneuver, they are poorly 
suited to consider multiple hazards, complex vehicle dynamics, 
actuator and controller limitations, or complicated environmental 
geometry with its attendant constraints.

In (Anderson et al. 2010a), a framework for semi-autonomous 
control of passenger vehicles is presented.  This framework uses 
Model Predictive Control (MPC) to iteratively plan trajectories 

through a traversable corridor, assess the threat this trajectory 
poses to the vehicle, and regulate driver and controller inputs to 
prevent that threat from exceeding a given threshold. In the 
context of static hazards, this system’s model-based threat 
assessment provides an efficient means of: 1) combining various 
roadway hazards such as lane boundaries and roadway obstacles 
into realistic spatial constraints and 2) combining these constraints 
with knowledge of the vehicle dynamics to predict the threat 
posed by those hazards given the current inputs of a human driver.

This paper demonstrates this framework’s potential in military 
applications of manned and unmanned ground vehicles. The basic 
framework operation is first presented, followed by a discussion of 
advantages it offers in teleoperation scenarios. Simulations of 
controller performance in the presence of unsafe driver inputs and 
time delays are then presented, and the paper closes with general 
conclusions.

3. FRAMEWORK DESCRIPTION
The framework described in this paper leverages the 

predictive and constraint-handling capabilities of MPC to perform 
trajectory planning, threat assessment, and semi-autonomous 
hazard avoidance. First, an objective function is established to 
capture desirable performance characteristics of a safe or 
“optimal” vehicle path. Boundaries tracing the edges of the 
drivable road surface are derived from (assumed) forward-looking 
sensor data and a higher-level corridor planner. These boundaries 
extrapolate the current state of road hazards (vehicles, pedestrians, 
etc.) to establish a traversable corridor constraining the vehicle’s 
projected lateral position. This constraint data, together with a 
model of the vehicle dynamics, is then used to calculate an 
optimal sequence of inputs and the associated vehicle trajectory. 
The predicted trajectory is treated as a “best-case” scenario and 
used to establish the minimum threat posed to the vehicle given its 
current state and a series of best-case inputs. This threat is then 
used to calculate the intervention required to prevent departure 
from the traversable corridor, and driver/controller inputs are 
scaled accordingly. Figure 1 shows a block diagram of this system. 

Figure 1. Diagram of an active safety system

3.1 Assumptions
In this paper it is assumed that road lane data is available and 

that the instantaneous position, velocity, and acceleration of road 
hazards have been measured or estimated by on-board sensors or 
vehicle-to-vehicle communication. Existing systems and previous 
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work in onboard sensing and sensor fusion justify this as a 
reasonable assumption. Radar, LIDAR, and vision-based lane-
recognition systems (Leonard et al. 2008), along with various 
sensor fusion approaches (Zomotor and Franke 1997) have been 
proposed to provide the lane, hazard, and environmental 
information needed by this framework. Where multiple corridor 
options exist (such as cases where the roadway branches or the 
vehicle must avoid an obstacle in the center of the lane), it is 
assumed that a high-level planner has selected a single corridor 
through which the vehicle should travel.

3.2 Path Planning
The best-case (or baseline) path through the constrained 

corridor is predicted by an MPC controller. Model Predictive 
Control is a finite-horizon optimal control scheme that uses a 
model of the plant to predict future vehicle state evolution and 
optimize a set of inputs such that this prediction satisfies 
constraints and minimizes a user-defined objective function. At 
each time step, t, the current plant state is sampled and a cost-
minimizing control sequence spanning from time t to the end of a 
control horizon of n sampling intervals, t+n t, is computed 
subject to inequality constraints. The first element in this input 
sequence is implemented at the current time and the process is 
repeated at subsequent time steps. Three important elements of the 
controller implemented in this paper – the plant model, objective 
function, and constraint setup – are described below. 

3.3 Vehicle Dynamic Model
The vehicle model used by the controller consists of the 

linearized kinematics of a 4-wheeled vehicle along with its lateral 
(wheel slip) yaw, and roll dynamics. Vehicle states include the 
position of its center of gravity [x, y], the vehicle yaw angle ψ , 

yaw rate ψ& , sideslip angle ϕ& as 

illustrated in Figure 2. The input to the system is the front steer 

Figure 2. Vehicle model used in MPC controller

Table 1 defines and quantifies this model’s parameters.

Table 1.  Vehicle Model Parameters

Symbol Description Value [units]

m Total vehicle mass 2450 [kg]
Izz Yaw moment of inertia 3053 [kg•m2]
xf C.g. distance to front wheels 1.13 [m]
xr C.g. distance to rear wheels 1.43 [m]
yw Track width 1.56 [m]
Cf Front cornering stiffness 1640 [N/deg]
Cr Rear cornering stiffness 1140 [N/deg]

Surface friction coefficient 1
ms Chassis sprung mass 1880 [kg]
Ixx Roll moment of inertia 834 [kg•m2]
h Sprung c.g. height 0.34 [m]
kf , kr Front & rear axle roll stiffness 30 x 103 [N•m/rad]
bf , br Front & rear axle roll damping 1600 [N•m•s/rad]

Tire compliance is included in the model by approximating 
lateral tire force (Fy) as the product of wheel cornering stiffness 
(C) and wheel sideslip ( or ) as in

αCFy = (1)

and illustrated in Figure 2.

Figure 3. Tire compliance model illustrating velocity V, slip angle , 
and lateral force Fy

Linearizing about a constant speed and assuming small slip 
angles, equations of motion for this model become (where 
represents the steering angle input),
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where Cf and Cr represent the (linearized) cornering stiffness of 
the lumped front wheels and the lumped rear wheels, xf and xr are
the longitudinal distance from the c.g. of the front and rear wheels, 
respectively, and D = 1 + msh

2/Izz. As described in (Anderson et al. 
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2010a) and briefly discussed below, small slip angles are 
maintained by configuring the MPC objective function and semi-
autonomous intervention law to keep wheel slip within the roughly 
linear range of the tire force curve. The constant speed assumption 
used in this linearization reflects the common driver intention in 
highway driving scenarios.

3.4 Constraint Setup
Assuming that the environment has been delineated previously 

(see assumptions above), the boundaries of the traversable road 
surface ( ymin(x) and ymax(x) ) are sampled over the prediction 
horizon to generate the constraint vectors

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]Tyyy

Tyyy

pkykyk

pkykyk

++=

++=

minminmin

maxmaxmax

1

1

L

L

y

y
(3)

Moving hazards are considered in the autonomous control 
problem by estimating their future position based on their current 
position, velocity, and acceleration and excluding predicted 
collision states from the constraint-bounded corridor (Anderson et 
al. 2010b).

Constraints on vehicle position are constructed at each 
sampling instant to form a convex (in y) corridor from the outline 
of each hazard’s anticipated position and depth at time tc. Figure 4
illustrates what a snapshot aof this time-varying constraint 
placement might look like to the controller.

Figure 4. Illustration of constraint placement (yy
max ,  yy

min) for
moving hazards

By enforcing vehicle position constraints at the boundaries of 
the traversable environment1, the controller forces the MPC-
generated path to remain within the constraint-bounded corridor 
whenever dynamically feasible. Coupling this lateral position 
constraint with input constraints umin/max, input rate constraints 

min/max, and vehicle dynamic considerations, the traversable
operating corridor delineated by yy

max and yy
min translates to a safe 

operating region within the state space.

1 Position constraints may be applied to the vehicle profile or offset and 
applied to its center of gravity. In this paper, the later approach was used. Results 
shown here illustrate the host vehicle c.g. traveling through the offset corridor.

3.5 Objective Function
Inside the constraint-bounded corridor, various vehicle 

outputs such as load transfer, yaw rates, or lateral acceleration, 
may be minimized to improve vehicle performance, stability, and 
controllability. In this work, front wheel sideslip 
( ( ) δβψα −+= &Vx f

) is chosen for its influence on the 

controllability of front-wheel-steered vehicles. As illustrated in
Figure 3, cornering friction begins to decrease above critical slip 
angles. These critical angles are well-known and provide a direct 
mapping from environmental conditions to vehicle handling 
limitations. The linearized tire compliance model’s failure to 
account for this decrease further motivates the suppression of front 
wheel slip angles to reduce controller-plant model mismatch. In 
(Falcone et al. 2007) it is shown that limiting tire slip angle to 
avoid this strongly nonlinear (and possibly unstable) region of the 
tire force curve can significantly enhance vehicle stability. Finally, 
trajectories that minimize wheel slip also tend to minimize lateral 
acceleration and yaw rates, leading to a safer and more 
comfortable ride.

Describing the discretized vehicle plant model by 

kvkukk vBuBAxx ++=+1 (4)

kvkk vDCxy += (5)

with x, y, u, and v representing states, outputs, inputs, and 
disturbances respectively, a quadratic objective function over a 
prediction horizon of p sampling intervals is defined as

2
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where Ry, Ru, and R represent diagonal weighting matrices 
penalizing deviations from 0iii === uy , represents the 

penalty on constraint violations, n denotes the number of free 
control moves, and maximum constraint violation 
over the prediction horizon p. Inequality constraints on vehicle 
position (y), inputs (u), and input rates ( ) are then defined as:
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where the vector represents the change in input from one 
sampling instant to the next, the superscript “( )j ” represents the 
jth component of a vector, k represents the current time, and the 
notation ( )j(k+i|k) denotes the value predicted for time k+i based 
on the information available at time k. The vector V allows for 
variable constraint softening over the prediction horizon, p, when 

is included in the objective function. Table 2 defines and 
quantifies this controller parameters used in this paper.
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Table 2. Controller Parameters

Symbol Description Value [units]

eng aut] Semi-autonomous intervention thresholds [0 3] deg
p Prediction horizon 40
n Control horizon 20
Ry Weight on front wheel slip 0.2657
Ru Weight on steering input 0.01
R u t) 0.01
umin/max Constraint on steering input deg10±

min

max

Constraint on steering input rate (/ t) deg75.0±
(15 deg/s)

yy
min

yy
max

Lateral position constraints Scenario -
dependent

Weight on constraint violation 1 x 105

V Variable constraint relaxation on vehicle 
position

V(1…p-1) =1.25
V(p) = 0.01

t Controller timestep (update rate) 50 msec

3.6 Threat Assessment and Controller Intervention
Similar to the controller described in (Anderson et al. 2010a)

the MPC controller used here constrains vehicle position, input 
magnitude, and input rates to satisfy safety requirements, while 
minimizing front wheel slip to maximize controllability and 
minimize plant-controller model mismatch. At each controller
timestep, the predicted front wheel sideslip ( ) is converted to a 

( ) ( )pkkkk +++=Φ ααα L21max
.

(8)

This threat assessment is then used in a piecewise-linear 
intervention function ( ) [ ]10,, ∈Φ MPCdriver uuK to blend driver 

and controller inputs as

( ) ( )( ) driverMPCvehicle uKuKu Φ−+Φ= 1 . (9)

The intervention function K used in (9) is parameterized by 
eng aut. While predicted threat 

eng, the driver maintains full control. As predicted 
threat increases, so does the proportion of control allocated to the 
controller. In the simulations and experiments shown below, K was 
calculated as
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Adjusting intervention thresholds eng and aut can 
significantly alter the “feel” – though not the effectiveness of –
the semi-autonomous controller (Anderson et al. 2010a). 
Increasing eng widens the “low threat” band in which the driver’s 
inputs are unaffected by the controller. While this provides greater 
driver freedom for low-threat situations, it may also increase the 
rate of controller intervention if eng is exceeded. Increasing the 
value of aut, on the other hand, delays complete controller 

intervention until more severe maneuvers are predicted. The 
friction-limited bounds on the linear region of the tire force curve 
(1) suggest a natural upper limit of aut

with a friction coefficient of 1.0 in order to ensure that by the time 
the predicted maneuver required to remain within the safe region 
of the state space reaches this level of severity, the controller has 
full control authority and can, unless unforeseen constraints 
dictate otherwise, guide the vehicle to safety.

3.7 Key Advantages

This corridor-based approach to path planning, threat 
assessment, and semi-autonomous vehicle control offers some key 
advantages to military applications of both manned and unmanned 
ground vehicles. By planning an optimal state trajectory through a 
constraint corridor rather than rigidly adhering to a preplanned 
path, this approach minimizes controller intervention while 
ensuring that the vehicle does not depart from the safe or 
navigable region of the environment. It also provides a unified 
architecture into which various vehicle models, actuation modes, 
trajectory-planning objectives, driver preferences, and levels of 
autonomy can be seamlessly integrated without changing the 
underlying controller structure.

The ability to rapidly adapt to various vehicles, operators, and 
environmental conditions makes this framework particularly well 
suited for manned ground vehicles. Unmanned and teleoperated 
vehicles may also benefit from its ability to ensure safe vehicle 
operation in presence of unsafe, uninformed, or latency-delayed 
operator inputs, or in the absence of operator inputs altogether (as 
when communications are lost). In the absence of control inputs, 
or when safety-critical scenarios require corrective action, the 
controller seamlessly transitions from semi-autonomous (human-
in-the-loop) to fully autonomous control as necessary to avoid 
hazards, returning control to the human operator as the threat is 
reduced or communications are restored. This shared control 
approach exploits the human operator’s complex perception and 
decision-making skills, while simultaneously reducing or 
eliminating the occurrence of collisions and loss of control caused 
by operator error.

4. SIMULATION

4.1 Setup
Controller performance was simulated using a nonlinear 

ADAMS® model of a generic light truck featuring a double 
wishbone suspension, passive roll stabilizers, and rack and pinion 
steering. Tire forces were approximated using a Pacejka tire 
model, which describes longitudinal and cornering forces as a 
function of normal force, tire slip angle, surface friction, and 
longitudinal slip. The vehicle model described by (2), with the 
parameters given in Table 1 was used in the MPC controller. 

A pure pursuit driver model was used to simulate operator 
inputs as the operator seeks to track a predefined path through the 
center of a safe corridor. This model implements proportional 
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feedback on the path tracking error, with the main tuning 
parameter being the lookahead distance L. Driver steering inputs 
were calculated as

( ) ( )( ) ( ) ( )Θ
+

−= sin
2

2L

xx
tyty rf

desδ (1)

where is illustrated in Figure 5.

Figure 5. Driver model parameter illustration

Various driver inputs were tested. In the first, the driver failed 
to steer around a hazard. Such a scenario can occur when a vehicle 
operator fails to notice an impending hazard or when 
communications and controls are impaired. The second type of 
driver input simulated a poor driver. In these simulations, the 
lookahead distance L was set to 10m, creating relatively large 
gains on the operator’s feedback control. This class was chosen to 
mimic the impaired driver in manned vehicles and replicate the 
overactuation observed in the teleoperation of systems with 
unpredictable latency (Chen et al. 2007). The third type of driver 
input mimicked a skilled driver. Using a lookahead distance of L = 
14m, and in the absence of system latency, this driver model
formulation successfully tracked a double-lane-change reference
trajectory. The final type of driver input simulated a skilled driver 
(L = 14m) in the presence of system latency. In these simulations, 
time delays of 100 – 200 ms were introduced to simulate the effect 
of feedback and control delays on a remote human operator. Note 
that because the semi-autonomous controller runs on the vehicle, 
its state feedback and control inputs are not directly affected by 
time delays.

4.2 Results
Simulation results were obtained for various maneuvers, 

driver inputs, objective function configurations, and intervention 
laws. Figure 6 compares the vehicle trajectory when the operator 
(traveling at a constant 20 m/s) does not take appropriate evasive 
action to avoid a hazard to the trajectory obtained with the semi-
autonomous controller in the loop. Note that the controller is able 
to semi-autonomously avoid the hazard without ever taking more 
than 50% of the available control authority (K) from the human 
driver. At any time, had the human regained the ability to control 
the vehicle s/he would have had significant control authority to 
modify the trajectory of the vehicle.

Figure 6. Simulation results demonstrating the effect of semi-
autonomous assistance on the vehicle trajectory

In the presence of a closed-loop “pure-pursuit” driver control, 
the moderating effect of semi-autonomous intervention on both the 
vehicle trajectory and driver input becomes apparent. Figure 7
shows one such simulation in which the semi-autonomous 
controller improved the driver’s ability to track a desired path. In 
this simulation, the pure pursuit driver model was designed with a 
short lookahead (L = 10 m). At 20 m/s, this corresponds to an 
effective lookahead horizon of 0.5 seconds, which lead to large 
steering gains and consequent difficulty in tracking the desired 
trajectory without losing control of the vehicle.

In this scenario, including the semi-autonomous controller in 
the control loop reduces the magnitude of the driver’s inputs. 
Whereas a short lookahead distance and its attendant high steering 
gains (1) caused the unassisted driver to oversteer and lose control 
of the vehicle, the assisted driver was more moderate in its steer 
commands and thus maintained control of the vehicle. Moreover, 
allocating less than 50% of the available control authority to the 
MPC controller was sufficient to keep the vehicle inside the 
corridor and within 0.4 meters of the desired trajectory. The 
combined effect of both inputs (driver and controller) is a vehicle 
trajectory that more closely tracks the driver’s desired trajectory 
than either the pure pursuit controller or corridor-based MPC 
controller would have done on its own.
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Figure 7. Effect of semi-autonomous intervention on the inputs and 
performance of an unskilled driver

It is important to note that improved path tracking is not 
entirely the result of the MPC controller’s actions; the controller 
seeks only to keep the vehicle within a navigable corridor, 
asserting only as much control authority as the predicted (and 
stability-related) threat warrants. The “assisted” (i.e. semi-
autonomous) trajectory shown in Figure 7 tracks the desired 
trajectory specifically due to a control authority allocation that 
allows the driver significant freedom to track a desired path while 
allowing the MPC controller just enough control authority to 
stabilize and keep the vehicle within a navigable corridor.

When latency as little as 100ms was introduced between a 
well-tuned (ie. stable in the absence of time delays) driver model 
(L = 14m) and the vehicle, the unassisted driver was unable to 
maintain control of the vehicle while negotiating around a hazard.  
This instability observed in the presence of time delays as short as 
a few hundred milliseconds is consistent with experimental 
observations (Chen et al. 2007). With the semi-autonomous 
controller in the loop (operating on the vehicle itself), the vehicle 
successfully negotiates the turn and again causes the human 
operator to moderate his/her inputs and thereby maintain control 
and better track his/her desired trajectory.

Figure 8 compares the performance of 1) the (well-tuned) 
driver model without time delays, 2) the same driver model in the 
presence of a 200ms time delay, and 3) the semi-autonomously-
assisted driver model in the presence of a 200ms delay. Note that, 
as observed in local or undelayed remote vehicle operation, the 
semi-autonomous controller has no trouble keeping the vehicle 
under control while ceding the majority of the available control 
authority to the human operator. This is unsurprising given the 

driver-agnostic nature of the MPC-based controller. Because the 
controller seeks only to keep the vehicle within a constraint-
bounded envelope of operation, its threat assessment and 
intervention function treat any error – human-caused, latency-
caused, or otherwise – the same way; if it poses an imminent risk 
of causing the vehicle to leave the save region of operation, it will 
intervene as necessary to correct the vehicle’s current (and 
predicted future) trajectory. 

Figure 8. Simulation results illustrating the effect of a 200ms time 
delay on the driver model and demonstrating the ability of the semi-
autonomous framework to assist the driver

5. CONCLUSION
This paper described a semi-autonomous hazard avoidance 

framework that performs trajectory planning, threat assessment, 
and shared-adaptive control in both manned and unmanned ground 
vehicles. This method was shown in simulation to efficiently avoid 
collisions with environmental hazards while satisfying position, 
input, and dynamic vehicle constraints in the presence of unsafe, 
delayed, or absent human inputs. Additionally, the framework was 
shown to provide significant autonomy to a human driver during 
low threat situations, intervening only as necessary to keep the 
vehicle within a safe corridor. Finally, while the simulation results 
shown here closely correlate with experimental results on a semi-
autonomously-controlled passenger vehicle (Anderson et al. 
2010a), further research remains to be conducted to understand 
how latencies and nuances common to teleoperation affect the 
performance of both the human operator and the vehicle.
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